Algorithms in the Hands of Humans: Implications for Fairness

Jennifer L. Doleac Texas A&M University

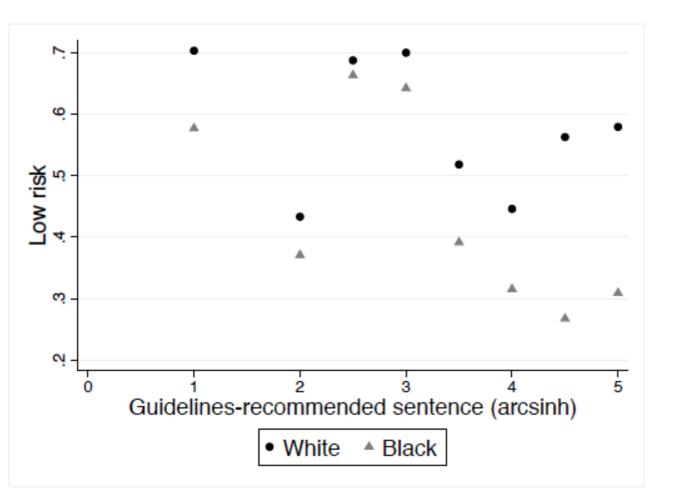
- Lots of attention paid to creating fair algorithms
 - Let's imagine we create an algorithm we're happy with then what?
 - Most discussion is framed as human vs. machine
 - But machines' predictions rarely replace humans' predictions the former aim to inform the latter
- How this new information affects real-world outcomes we care about will depend crucially on:
 - What humans might have done in the absence of that information
 - Human decision-makers' objective functions and the various incentives they face
 - This is where social scientists are needed

Case study: Effect of algorithmic risk scores on criminal sentencing

- Stevenson & Doleac (2019) considers effects on sentencing in Virginia
 - New risk assessment for non-violent offenders aimed to divert 25% lowest-risk offenders from incarceration
 - Risk assessment included controversial elements such as employment and marital status, in addition to less controversial variables like age and criminal history
- We find that judges pay attention to the risk scores: they change who they incarcerate
 - But that's the end of the good news
 - No net effect on incarceration rates
 - No efficiency gains (that is, no reduction in recidivism)
 - Judges appear to have responded as much to the absence of a diversion recommendation as to the recommendations themselves this led to unintended consequences
 - What about fairness? We consider differential effects by:
 - Race (black vs. white)
 - Age (less than 23 vs. older)

Risk scores are worse for black and young offenders

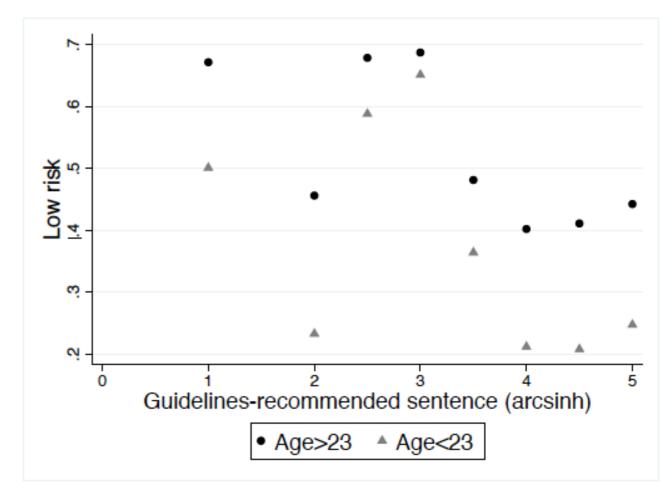
• Black (young) defendants have higher risk scores than white (older) defendants with the same guidelines-recommended sentence



Racial disparities in diversion

recommendation

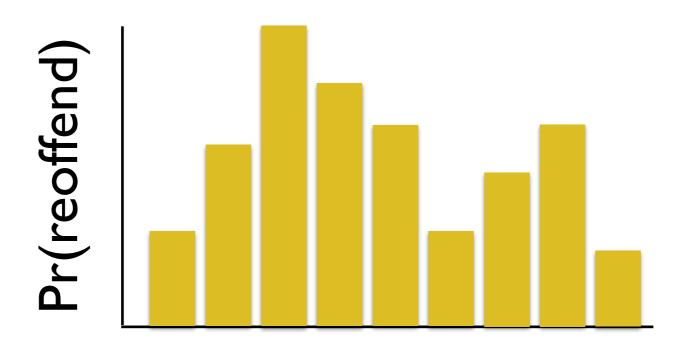




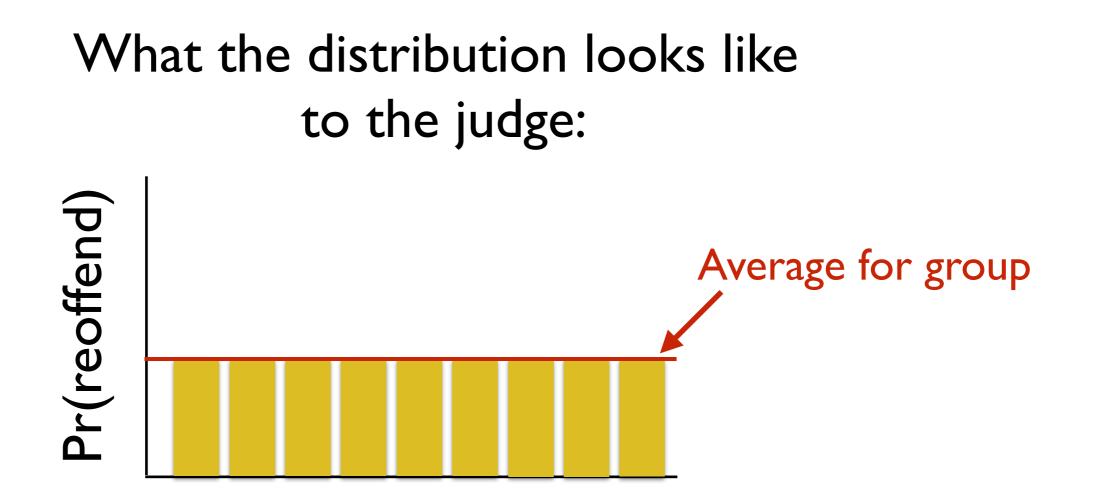
- Does this mean risk assessments will increase disparities in sentencing?
 - Not necessarily!
 - Depends on judges' beliefs about group-level reoffending rates without the risk scores
 - Eliminating information that is unfavorable to a particular group does not necessarily help that group, due to statistical discrimination (see Ban the Box literature)

- Imagine a set of offenders from a particular group (gender, race, crime type)
- Judges don't have enough info to distinguish between individuals within the group, so use group averages to predict what is likely true of the individual (statistical discrimination)

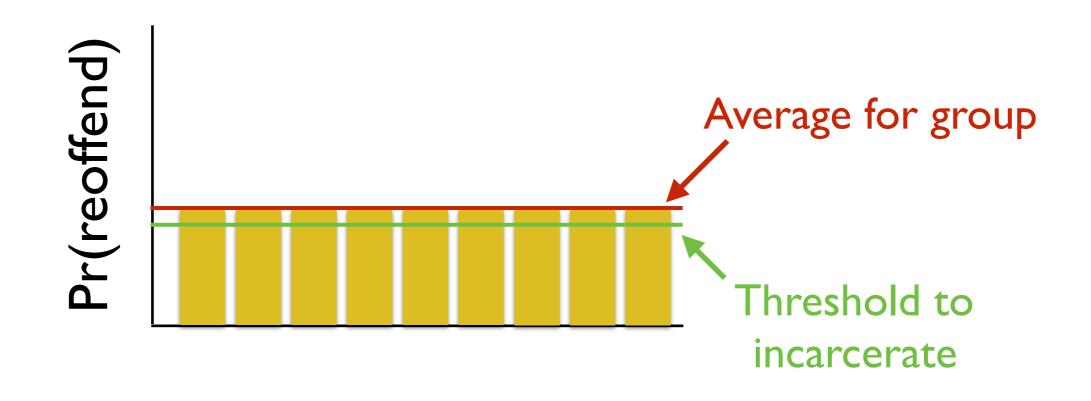
Actual distribution of risk:



- Imagine a set of offenders from a particular group (gender, race, crime type)
- Judges don't have enough info to distinguish between individuals within the group, so use group averages to predict what is likely true of the individual (statistical discrimination)



- Imagine a set of offenders from a particular group (gender, race, crime type)
- Judges don't have enough info to distinguish between individuals within the group, so use group averages to predict what is likely true of the individual (statistical discrimination)
- If they incarcerate anyone above a certain risk threshold (green line below), then they'll incarcerate anyone in a group that has an average risk level above that threshold
 - In the example below, the **incarceration rate is 100%** when individual-level risk scores aren't available, because the group average is above the threshold

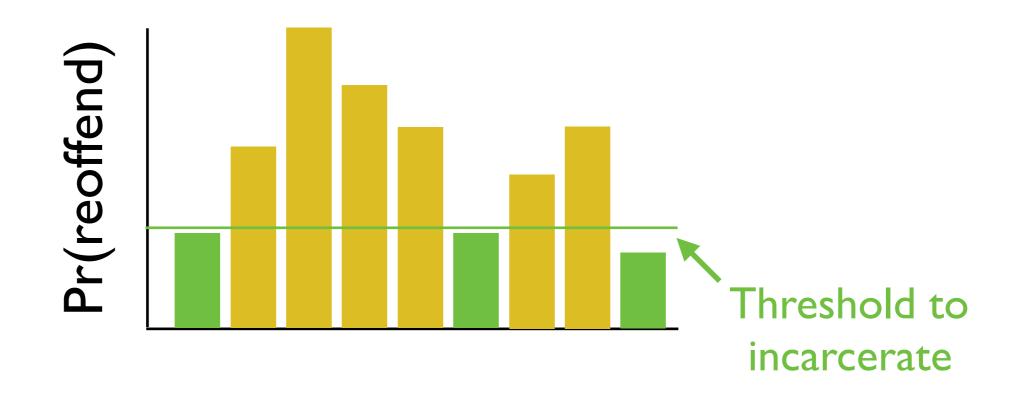


Adding information can help low-risk members of high-risk groups

• Now imagine that judges get risk score information that allows them to distinguish between individuals (or at least disaggregate the groups a bit)

Adding information can help low-risk members of high-risk groups

- Now imagine that judges get risk score information that allows them to distinguish between individuals (or at least disaggregate the groups a bit)
- Note that the information is still, on average, worse for everyone in the graph below
 — the underlying risk levels have not changed
 - But those who are lower-risk benefit from more detailed info being revealed
 - Judges are now able to distinguish between low- and high-risk defendants within the group
 - Incarceration rate drops from 100% to 67%



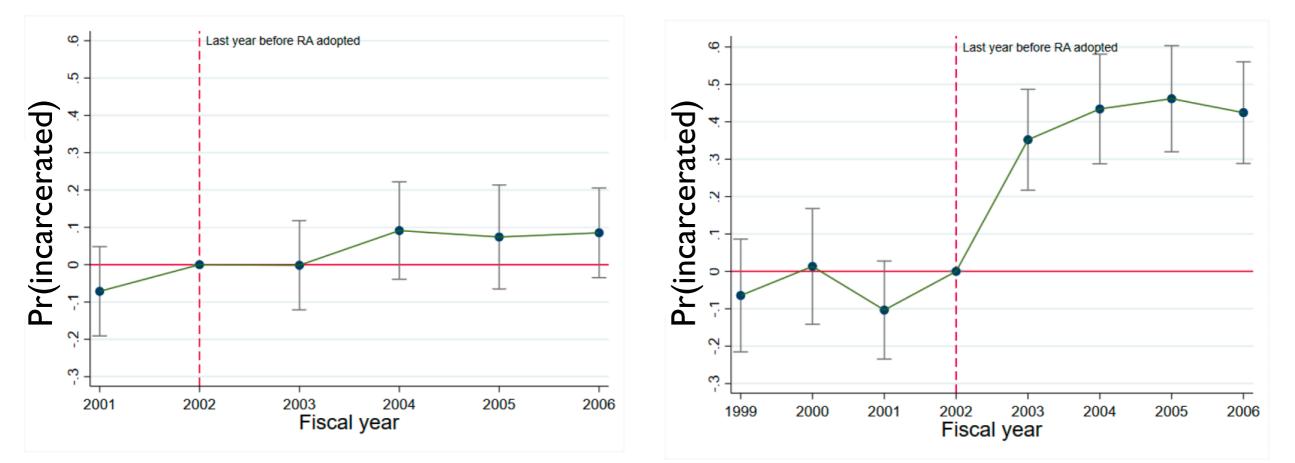
- Real-world effects can be tough to predict
- Average algorithmic risk scores for groups don't tell us whether those groups are helped or hurt by the use of algorithms — will depend on what human decision-maker assumes in the absence of those scores
- And judges may be considering lots of other factors, in addition to risk level:
 - Culpability of defendant
 - Victims' wishes
 - Political pressure to be tough on crime
 - Asymmetric cost of making the wrong decision
- Algorithmic risk scores may be better info about just one factor they're considering
 - Risk score info might also interact with some of the factors above (e.g. a low-risk score could reduce political pressure to incarcerate, and this interaction effect could vary across groups)

- This is where social scientists come in
- We need to measure causal effects on the outcomes we care about (e.g. sentencing disparities)
 - To do this, we need a randomized experiment or a natural experiment
- Let's turn back to Virginia, where risk scores were used to identify lowest-risk non-violent offenders...

• Simulation of what should have happened to sentencing for key groups if the risk assessment recommendations **replaced** judges' decisions:

Black defendants

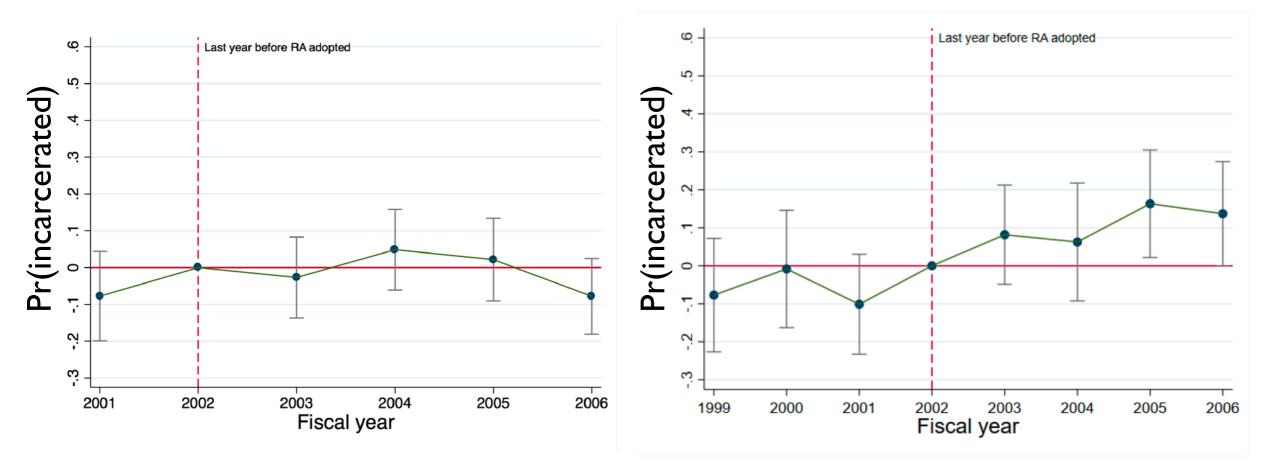
Young defendants



• What actually happened to sentencing for key groups when the risk assessment recommendations **informed** judges' decisions:

Black defendants

Young defendants



J0		/							
Panel A: Diverted risk = low									
Alternative risk score	0.013					0.010			
	(0.010)					(0.010)			
Black		-0.015				-0.014			
		(0.015)				(0.016)			
Unemployed			0.025			0.009			
			(0.017)			(0.018)			
Female				0.040^{**}		0.038^{**}			
$\Lambda = -22$				(0.016)	0.069****	(0.017)			
Age<23					(0.009)	0.065^{***} (0.020)			
Observations	3943	3943	3943	3943	$\frac{(0.020)}{3943}$	3943			
R^2	0.204	0.204	0.204	0.205	0.206	0.280			
Mean DV	0.44	0.44	0.201 0.44	0.44	0.44	0.44			
Panel B: Diverted $ $ risk = high									
		Alternative risk score			D. DIVELU	$\mathbf{u} \mid \mathbf{nsk} =$	- mgn		-0.007
		THEFHAUVE HER SCOLE		(0.005)					(0.005)
		Black		(0.000)	-0.029***				-0.045****
		2100011			(0.010)				(0.012)
		Unemploy	red			0.043****			0.018
						(0.012)			(0.012)
		Female					0.038***		0.040^{***}
							(0.013)		(0.014)
		Age < 23						0.065****	0.058****
								(0.011)	(0.011)
		Observations		7598	7598	7598	7598	7598	7598
		R^2		0.142	0.143	0.144	0.143	0.146	0.197

0.16

0.16

0.16

0.16

0.16

0.16

Mean DV

Judges systematically deviate from the risk score recommendation

Judges' bias affects when they pay attention to the risk scores

- When deciding whom to divert from incarceration:
 - They are more likely to follow the low-risk recommendation for female and younger defendants
 - They are more likely to deviate from the high-risk recommendation for white, female, and younger defendants
- **Punchline:** Even if the risk scores are perfectly fair, the way judges implement them may not be

- Simulated vs. actual results for young people raises the question of whether judges were actually making prediction errors in the absence of algorithmic risk scores
- Are they getting it wrong? Or do they simply have competing objectives?
 - Reluctance to incarcerate young defendants is in line with long-standing view that youth is a mitigating factor young people are viewed as less culpable for their crimes
 - Most of the anticipated efficiency gains from the risk assessment would have come from locking up these young defendants
 - Perhaps judges knew all along that young defendants were high-risk, but they chose not to incarcerate them
 - Risk scores push them a bit in this direction, but is that what we want? Is this fair?

• So far existing work finds little/no evidence of efficiency gains from algorithms, and some red flags with respect to how the use of the algorithms affects fairness (race/age disparities)

• Important driver of real-world effects is how humans use the predictions

- We're hoping that algorithms will correct biases in human decision-making
- But those biases (1) may be smaller than we think, and (2) affect when they defer to the algorithm's recommendation
- Competing objectives (e.g. leniency toward young people, concern about public backlash, desire to be reelected/reappointed) will affect how judges and prosecutors use these tools
 - Real-world effects are difficult to predict
- Research frontier: How do we implement these tools in a manner that moves us closer to our societal goals?
 - To figure this out, it will be crucial to implement algorithms in a way that enables rigorous evaluation
 - Important area for social scientists and computer scientists to collaborate going forward!

Email: jdoleac@tamu.edu